(1) K. K. Shen, D. Wang, X. Z. Ma, K. X. Zhao, Q. Jin, J. P. Xiao, Y. Cai, Y. F, Zhang, L. L. Wu*, and X. T. Zhang. In situ artificial solid electrolyte interface engineering on an anode for prolonging the cycle life of lithium-metal batteries. Dalton Trans., 2023, 在线发表.
(2) H. Chen, M. Cheng, L. T. Liu, Y. Wang, F. Y. Chen, X. Z. Ma*, and Q. F. Zhang*. Mathematical modeling and in-depth analysis of 10 kW-class iron-vanadium flow batteries. J. Power Sources, 2023, 563, 15, 232813.
(3) Y. C. Zhu, J. Yao, L. N. Bai, W. C. Zhang, W. Wang, X. Z. Ma*, and L. L. Wu*. Dense MoS2/CoS2 heterointerfaces with optimized electronic structure for efficient alkaline hydrogen evolution reaction. ACS Appl. Energy Mater., 2023, 6, 4, 2479–2488.
(4) Q. Gao, X. N. Yang, S. C. Li, S. Wageh, O. A. A. Hartomy, A. G. A. Sehemi, L. J. Li*, X. Z. Ma*, and H. Zhang*. Pb(Zrx,Ti1-x)O3 perovskite material for passively ultrafast pulse generation in a Tm: YAP laser. Opt. Laser Technol., 2023, 157, 108707.
(5) X. Z. Ma, M. Y. Zhang, F. Aza, Q. Gao*, Z. K. Xu, L. Li, L. L. Wu, X. T. Zhang*, and Y. J. Chen*. Photothermal effect promoted interfaced OH− filling and conversion of carrier type in (Co1-xNix)3C during water oxidation. J. Mater. Chem. A, 2022, 10, 8258−8267.(热点文章)
(6) X. Chang, B. Yang, X. Y. Ding, X. Z. Ma*, and M. Y. Zhang*. One–dimensional CoP/MnO hollow nanostructures with enhanced oxygen evolution reaction activity. J. Colloid Interf. Sci., 2022, 610, 663−670.
(7) D. X. Xu, J. Yao, X. Z. Ma*, Y. Xiao, C. Zhang, W. Lin, and H. Gao. F, N neutralizing effect induced Co−P−O cleaving endows CoP nanosheets with superior HER and OER performances. J. Colloid Interf. Sci., 2022, 619, 298−306.
(8) B. Yang, X. Chang, X. Y. Ding, X. Z. Ma*, and M. Y. Zhang*. One-dimensional Ni2P/Mn2O3 nanostructures with enhanced oxygen evolution reaction activity. J. Colloid Interf. Sci., 2022, 623, 196−204.
(9) Y. X. Shi, S. R. Liu, C. Ouyang, Z. K. Xu*, H. X. Su, J. Yao, M. Y. Zhang*, and X. Z. Ma*. Co3O4 nanowires decorated with BOx species for electrocatalytic oxygen evolution. ACS Appl. Nano Mater., 2022, 5, 18998–19005.
(10) X. Guo, M. X. Yu, X. Chang, X. Z. Ma*, and M. Y. Zhang*. Cobalt sulfide nanoparticles encapsulated in carbon nanotube−grafted carbon nanofibers as catalysts for oxygen evolution. ACS Appl. Nano Mater., 2022, 5, 16594–16601.
(11) M. X. Yu, X. Guo, X. Chang, X. Z. Ma*, and M. Y. Zhang*. Assembled cobalt phosphide nanoparticles on carbon nanofibers as a bifunctional catalyst for hydrogen evolution reaction and oxygen evolution reaction. Sustainable Energy Fuels., 2022, 6, 5000–5007.
(12) Y. Zhang, B. Q. Zhang, Z. X. Yin, X. Z. Ma*, and Y. Zhou*. Bimetallic Ni–Mo nitride@N-doped C as highly active and stable bifunctional electrocatalysts for full water splitting. New J. Chem., 2022, 46, 11893-11901.
(13) Q. Gao, W. S. Zhang, S. Zhou*, X. Z. Ma*, and L. J. Li*. A passively Q-switched operation of Tm: YAP laser with a zeolite imidazole framework-8 saturable absorber. Optik, 2022, 262, 169376.
(14) W. Q. Zheng, X. Z. Ma, H. Sun, X. P. Li, Y. Zhang, Z. X. Yin, W. Chen*, and Y. Zhou. Fe–Ni–Co trimetallic oxide hierarchical nanospheres as high-performance bifunctional electrocatalysts for water electrolysis. New J. Chem., 2022, 46, 13296-13302.
(15) X. P. Li, M. Zhou, Z. X. Yin*, X. Z. Ma*, and Y. Zhou*. Bimetallic Ni−Mo nitride@C3N4 for highly active and stable water catalysis. Front Mater Sci., 2022, 16, 220613.
(16) H. Chen, L. K. Han, Y. H. Zhang, S. R. Zhang, F. Y. Chen, X. Z. Ma*, and Q. F. Zhang. Modeling and optimization of vanadium flow batteries incorporating variable permeability and resistance. J. Electrochem Soc., 2022, 169, 110518.
(17) H. F. Ye, X. J. Zhou, Z. T. Shao, J. Yao, W. J. Ma, L.L. Wu*, and X. Z. Ma*. In situ integration of cobalt diselenide nanoparticles on CNTs realizing durable hydrogen evolution. RSC Adv., 2022, 12, 4446-4454.
(18) Z. G. Pi, Z. Q. Han, P. Yu*, Z. X. Yin*, and X. Z. Ma*. Promising CoSe2-CNT composite catalyst for efficient photoelectrochemical hydrogen evolution reaction. Sec Energy Materials, 2022, 9.
(19) Z. X. Yin, S. Zhang, J. L. Li, S. K. Ma, W. Chen, X. Z. Ma*, Y. Zhou*, Z. F. Zhang, and X. Wang. In situ fabrication of a Ni–Fe–S hollow hierarchical sphere: an efficient (pre)catalyst for OER and HER. New J. Chem., 2021, 45, 12996-13003.
(20) W. S. Zhang, Q. Gao, S. Zhou, L. J. Li*, and X. Z. Ma*. Diode-pumped acousto-optical Q-switched Ho:GdTaO4 laser at 2.07 μm. Opt. Laser Technol., 2021, 144, 107368.
(21) Z. X. Yin, S. Zhang, W. Chen*, X. Z. Ma*, Y. Zhou, Z. F. Zhang, X. Wang, and J. L. Li. Hybrid-atom-doped NiMoO4 nanotubes for oxygen evolution reaction. New J. Chem., 2020, 44, 17477-17482.
(22) X. Z. Ma, K. X. Zhao, Y. Sun, Y. Wang, F. Yan, X. T. Zhang*, and Y. J. Chen*. Direct observation of chemical origins in crystalline (NixCo1-x)2B oxygen evolution electrocatalysts. Catal. Sci. Technol., 2020, 10, 2165−2172.
(23) X. Z. Ma, K. Y. Li, X. Zhang, B. Wei, H. Yang, L. N. Liu, M. Y. Zhang, X. T. Zhang*, and Y. J. Chen*. The surface engineering of cobalt carbide spheres through N, B co−doping achieved by room−temperature in situ anchoring effects for active and durable multifunctional electrocatalysts. J. Mater. Chem. A, 2019, 7, 14904−14915.
(24) X. Z. Ma, J. Wen, S. Zhang, H. R. Yuan, K. Y. Li, F. Yan, X. T. Zhang*, and Y. J. Chen*. Crystal CoxB (x=1−3) synthesized by a ball−milling method as high−performance electrocatalysts for the oxygen evolution reaction. ACS Sustainable Chem. Eng., 2017, 5, 10286−10274.
|